Topic: Plasma treatment in solar technology. Plasma coating of solar thermal mirrors in solar energy systems. Corrosion protection coating for solar energy systems. Plasma polymer nanocoating. Plasma polymerization of solar modules.

Openair® plasma for better performance and long-term efficiency of solar energy systems

The solar radiation of the sun is available in abundance as an energy source. The total energy radiated onto the surface of the earth could meet humanity’s energy requirements seven thousand times over. (Source: Volker Quaschning, Regenerative Energy Systems, Hanser Verlag, Munich).

In recent decades, intensive work has been done on solar technology to make it usable in solar energy systems. Two main approaches can be distinguished: solar thermal energy and photovoltaics.

The solar modules, collectors and technology installed in solar energy systems are exposed to weathering around the clock. That means these elements must be protected especially against environmental influences – like humidity and temperature fluctuations. Especially in the sunniest areas on earth, there are extreme temperature differences between day and night. This puts high demands on the protection and on secure, long-term sealing of cables, modules and converters.

Use of the radiated heat for heating and storage of water and other heat transfer media.

The high material quality achieved with Openair® plasma treatment produces the best prerequisites for highly efficient use of solar technology:

  • Plasma activation makes it possible to manufacture weather-resistant solar modules with the use of adhesive bonding that is absolutely reliable, watertight and has long-term stability (photovoltaics).
  • With the plasma coating in the PlasmaPlus® process, solar thermal mirrors in solar energy systems can be reliably provided with a glass-like corrosion protection coating (solar thermal energy).
  • With plasma polymer nanocoating (plasma polymerization), surfaces of solar modules can be provided with functional characteristics in selected areas, e.g.:
    – Better transmission (less reflection)
    – Protection against the formation of biofilms (moss and algae growth)
    – Ultrahydrophobic anti-adherent coating (protection against soiling)